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Abstract. With the emergence of applications that require content-
based similarity retrieval, techniques to support such a retrieval paradigm
over database systems have emerged as a critical area of research. User
subjectivity is an important aspect of such queries, i.e., which objects
are relevant to the user and which are not depends on the perception
of the user. Query refinement is used to handle user subjectivity in sim-
ilarity search systems. This paper explores how to enhance database
systems with query refinement for content-based (similarity) searches in
object-relational databases. Query refinement is achieved through rele-
vance feedback where the user judges individual result tuples and the
system adapts and restructures the query to better reflect the users in-
formation need. We present a query refinement framework and an array
of strategies for refinement that address different aspects of the problem.
Our experiments demonstrate the effectiveness of the query refinement
techniques proposed in this paper.

1 Introduction

Similarity retrieval has been recently explored for multimedia retrieval, especially
in the context of image databases. Multimedia objects are typically represented
using a collection of features such as color, texture, shape, etc. that partially
capture the content of the multimedia object. Since features imperfectly rep-
resent the content of the multimedia object, when searching for a multimedia
object, it is infeasible to insist on retrieving only those objects that exactly match
the query features. Instead, a similarity feature matching approach to retrieving
multimedia objects makes much more sense. Accordingly, users expect to see the
results of their query in ranked order, starting with the results most similar to
the query first. Multimedia similarity retrieval has been studied extensively by
several researchers and projects including QBIC [10], MARS [16], WebSeek[7],
DELOS [13] and HERMES [3] among others. Another field where similarity
retrieval has been explored extensively is in Text Information Retrieval [4].
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The initial result ranking computed in response to a query may not ad-
equately capture the users preconceived notion of similarity or information
need [4], prompting the user to refine the query. The gap between the actual
and desired rankings is due to the subjective perception of similarity by users on
one hand, and the difficulty to express similarity queries that accurately capture
the users information need on the other. This gap may arise due to many rea-
sons, including the users unfamiliarity with the database, difficulty in assigning
weights to different similarity predicates, differing priorities, etc. Therefore, in an
effort to close this gap, users initiate an information discovery cycleby iteratively
posing a query, examining the answers, and re-formulating the query to improve
the quality (ranking) of the answers they receive. Research in multimedia [19,
12, 21, 5] and text retrieval [18, 4, 6] has therefore also focused on refining a query
with the help of the users feedback.

This paper advances the notion that similarity retrieval and query refinement
are critical not just in the context of multimedia and/or text retrieval, but in
general in the context of structured and semi-structured data. Some example
applications where such a need arises are:

Example 1 (Job Openings). In a job marketplace application, a listing of job openings
(description, salary offered, job location, etc.) and job applications (name, age, resume,
home location, etc.) are matched to each other. Resume and job description are text
descriptions, location is a two dimensional (latitude, longitude) position, and desired
and offered salary are numeric. Applicants and job listings are joined with a (similarity)
condition to obtain the best matches. Unstated preferences in the initial condition may
produce an undesirable ranking. A user then points out to the system a few desirable
and/or undesirable examples where job location and the applicants home are close
(short commute times desired); the system then modifies the condition and produces
a new ranking that emphasizes geographic proximity.

Example 2 (Multimedia E-catalog search). Consider an online garment retailer. The
store has an online catalog with many attributes for each garment: the manufacturer,
price, item description, and garment picture. We can define similarity functions for each
of these attributes, e.g., we can define how similar two given prices are and can extract
visual features from the garment image [10]. Through a query by example (QBE) user
interface, users select or enter a desired price, description, and/or select pictures of
attractive garments. Users then request the “most similar” garments in terms of those
attributes. The initial result ranking may not be satisfactory. The user then expresses
her preferences by marking the attributes appropriately, and re-submits the query. The
system computes a new set of answers ranked closer to the users desire.

We propose to shift as much as possible the burden of refinement from the
user to the database management system (DBMS). When users examine answers,
they naturally know which ones fit the desired results, instead of initiating the
mental process of refinement, users off-load the task to the DBMS by merely
judging some of the answers. Judging takes the form of a user interaction with
the system where relevance judgments about results – which results the user
thinks are good examples, and which ones are bad examples – are fed back to the
DBMS. The DBMS uses these relevance feedback judgments to refine the query
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Fig. 1. Query Refinement System Architecture

and re-evaluates1 it to produce a new ranked answer set which may be subject
to more iterations of query refinement. The burden on the user is thus reduced
to selecting a subset of results as good or bad and informing the DBMS. This
interaction can be done directly through SQL, or through a context specific user
interface reducing the users burden. This approach mirrors Information Retrieval
and Cooperative Databases that involve the user in the query answering loop.

We integrate data-type specific refinement algorithms into a framework that
combines multiple such algorithms and provides refinement across them. This
two-level approach to query refinement is also shown in figure 1, as intra-, and
inter- type refinement modules with specific algorithm plug-ins. Refinement al-
gorithms for specific data-types have been explored in the past, such as Roc-
chios [18] algorithm for text vector models, MARS and Mindreader algorithms
for image retrieval [19, 17, 12], and FALCON [21] for metric spaces, among others.
Our framework uses these and other algorithms as building blocks of a complete
system with query refinement support.

The main contribution of this paper is a proposal on how to support query
refinement through user relevance feedback in an object-relational DBMS (OR-
DBMS). Specifically, our contributions are:
• a generic refinement framework, or meta model, which accepts specific algorithm

“plug-ins”
• DBMS support interfaces and data structures to enable query refinement
• review several domain specific and domain independent query refinement techniques

We implemented our proposed framework as a wrapper on top of the Informix
Object Relational DBMS. Figure 1 shows the system architecture. A user inter-
face client connects to our wrapper, sends queries and feedback and gets answers
incrementally in order of their relevance to the query. We implemented the sim-
ilarity and refinement functionality described in this paper and also developed
a sample application to validate our approach in addition to our experiments.

The rest of this paper is developed as follows. Section 2 presents some
background. Section 3 presents our query refinement framework, and section 4
presents some specific refinement algorithms. Section 5 presents some experi-
1 Re-evaluation of a refined query may benefit from re-using the work done to answer

the original (or previous) query, but is not strictly part of the query refinement
process, therefore we do not discuss this topic in this paper. We assume a naive
re-evaluation that treats the refined query as an original query.



ments and an example query refinement application. Section 6 presents related
work. Section 7 offers some conclusions.

2 Preliminaries — Similarity Retrieval Model

Before we embark on an explanation of query refinement, we first discuss the
similarity retrieval model on which we build our query refinement work. Let us
consider an example query:

Example 3 (Similarity Query). The following query joins a table of houses with a
table of schools. The house table has price and availability attributes, and both tables
share a location attribute:

select wsum(ps, 0.3, ls, 0.7) as S, a, d
from Houses H, Schools S
where H.available and similar price(H.price, 100000, “30000”, 0.4, ps)

and close to(H.loc, S.loc, “1, 1” , 0.5, ls)
order by S desc

This query finds homes that are close to schools, are priced around $100,000, and are
available. The query has two similarity predicates: similar price, and close to. Both
predicates return similarity scores (ps, ls) that are combined into a single score S for
the whole tuple, here we use the wsum scoring rule to combine them. Note that a
similarity query contains both precise predicates and similarity predicates.

In the context of a similarity query, the following concepts are important: similar-
ity score, similarity predicate, scoring rule, and ranked retrieval. Ranked retrieval
stems from the intuitive desire of users of similarity based searching systems to
see the best answers first [15, 4], therefore the answers are sorted, or ranked on
their overall score S. We now cover the remaining concepts in detail.

A similarity based search in a database is an SQL query with both precise
and similarity predicates. Precise predicates return only those data objects that
exactly satisfy them, i.e., traditional Boolean predicates. Similarity predicates
instead specify target values and do not produce exact matches, they return
a similarity score S for objects that approximately match the predicate. To be
compatible with SQL, similarity predicates return Boolean values if the similarity
score is higher than a threshold. Data is represented in the object-relational
model which supports user-defined types and functions. In this work we focus
on select-project-join queries.

A similarity score provides a fine grained differentiation for a comparison
between values or objects, i.e., how good or bad they match. This is in contrast
to the prevalent precise comparisons that yield Boolean values, i.e., complete
match or not. We define a similarity score as follows:

Definition 1 (Similarity score S). S is a value in the range [0,1]. Higher
values indicate higher similarity.

Similarity predicates compare values and compute a similarity score S for
the degree to which the values match. For example, a similarity predicate for
2 dimensional geographic locations may say that identical locations are 100%



close (S = 1), 5 kilometers distance is 50% close (S = 0.5) and 10 kilometers
and beyond is 0% close (S = 0), etc. We define similarity predicates as follows:

Definition 2 (Similarity predicate). A similarity predicate is a function with
four inputs: (1) a value to be compared, (2) a set of query values, (3) a parameter
string to configure the similarity predicate, and (4) a similarity cutoff value α in
the range [0,1] (also called alpha cut or threshold), and returns two values: (1)
a Boolean value (true, false), and (2) a similarity score S (as a side effect). The
function returns true if S > α, else it returns false. The function has the form:

Similarity Predicate(input value, set of query values, parameters, α, S) →
{true, false}

This function compares an input value to one or more values of the same or
a compatible type. We support a set of values since in a Query-by-Example
paradigm it often makes sense to compute the similarity of an object with re-
spect to multiple examples rather than just one [17, 21]. To offer flexibility to
the user, similarity predicates may take additional parameters to configure the
predicate and adapt it to a specific situation, for example parameters may in-
clude weights that indicate a preferred matching direction between geographic
locations, or select between Manhattan and Euclidean distance models. We use
a string to pass the parameters as it can easily capture a variable number of nu-
meric and textual values. The similarity score S output parameter is set during
the matching. Similarity predicates of this form were used in other similarity
searching systems such as VAGUE [15] and others [1].

We further designate some similarity predicates as joinable:

Definition 3 (Joinable similarity predicate). A similarity predicate is join-
able iff it is not dependent on the set of query values remaining the same during
a query execution, and can accept a query values set with exactly one value which
may change from call to call.

Joinable similarity predicates can be used for both join and selection predi-
cates, while non-joinable predicates can only be used as selection predicates.

Our system stores the meta-data related to similarity predicates in the table
SIM PREDICATES( predicate name, applicable data type, is joinable).

In queries with multiple similarity predicates, a scoring rule combines the
individual scores of predicate matches, weighted by their relative importance,
into a single score [16, 9]. We store the meta-data related to scoring rules in the
table SCORING RULES(rule name).

Definition 4 (Scoring rule). Given a list of scores s1, s2, ..., sn, si ∈ [0, 1],
and a weight for each score w1, w2, ..., wn with wi ∈ [0, 1] and

∑
i wi = 1, the

scoring rule function returns an overall score in the range [0, 1]. A scoring rule
function has the form: scoring rule(s1, w1, s2, w2, ..., sn, wn) → [0, 1]2

2 In the implementation, we used arrays for the similarity scores and weights to ac-
commodate the variable number of parameters to scoring rule functions.



In addition to the scoring rule and similarity predicate meta-data, we main-
tain several tables that keep operational data for the similarity predicates and
scoring functions. For each similarity predicate (SP) in the query, we store the
user supplied parameters, cutoff, score variable, and the attribute(s) and query
values involved. The schema for this table is QUERY SP(predicate name, pa-
rameters, α, input attribute, query attribute, list of query values, score variable).
For the scoring rule, we store the scoring rule (SR) used, and a list of output
score variables and their corresponding weights. The schema for this table is
QUERY SR(rule name, list of attribute scores, list of weights).

3 Query Refinement System

In this section, we describe our query refinement system. We built our system
as a wrapper on top of a commercial database and support refinement over SQL
queries. We support a minimally modified SQL syntax to express refinement.
Figure 1 shows our system architecture, it shows a generic refinement algorithm
which accepts specific similarity predicates, scoring rules and refinement algo-
rithms as plug-ins. We now discuss this generic refinement algorithm and in
section 4 present some specific refinement algorithms we use.

The users querying process starts with several tables, user-defined data-types,
similarity predicates, and scoring rules, and proceeds as follows:
1. The user expresses her abstract information need as an SQL statement with a

scoring rule and one or more similarity predicates over some tables. Figure 2 shows
a query with two similarity predicates on table T .

2. The system executes the query and populates a temporary answer table with the
results. Figure 2 shows this answer table.

3. The user incrementally browses the answers in rank order, i.e., the best results first.
As the user sees the results, she can mark entire tuples or individual attributes3 as
good, bad, or neutral examples, this is recorded in a feedback table (figure 2). It is
not necessary for the user to see all answers or to provide feedback for all answer
tuples or attributes.

4. With the users feedback, the system generates a new query by modifying the
scoring rule and similarity predicates and goes back to step 2, executes the new
query and populates the answer table with the new results.

5. This process is repeated as desired.

To support query refinement the DBMS must maintain sufficient state infor-
mation and provide supporting interfaces to query refinement functions, we now
discuss these tables and functions.
Support Tables. To refine a query, all values of tuples where the user gave feed-
back judgments must be available, they are needed since refinement is guided by
the values of relevant and non-relevant tuples. In some queries, maintaining this
information may be complicated due to loss of source attributes in projections
or joins where attributes may be eliminated. To enable query refinement, we
3 When submitting feedback, our system offers two granularities: tuple and attribute

(or column). In tuple level feedback the user selects entire tuples for feedback. In at-
tribute level feedback, the user provides finer grained information, judging individual
attributes.



T:

tid a b c d

select θ(bs, vb, cs, vc) as S, a, b
from T
where d > 0 and

P(b, b̂, wb, bα, bs) and
Q(c, ĉ, wc, cα, cs)

order by S desc

θ scoring rule function
O, P, Q similarity predicates
wa, wb, wc weights for O, P, Q

â, b̂, ĉ query values for O, P, Q
aα, bα, cα cutoff values for O, P, Q
as, bs, cs output score for O, P, Q
va, vb, vc scoring rule weights

Answer:

tid S a b c

1 s1 a1 b1 c1

2 s2 a2 b2 c2

3 s3 a3 b3 c3

4 s4 a4 b4 c4

Feedback:

tid tuple a b

1 1 0 0
2 0 0 1
3 0 -1 1
4 0 0 -1

Scores:

tid O(a, a1) P (b, b̂) Q(c, ĉ)

1 1.0 0.8 0.9
2 – 0.9 –
3 0.2 0.8 –
4 – 0.3 –

Fig. 2. Data Structure Example for Query Refinement – Single Table

must include sufficient information in the answer to recompute similarity scores.
Therefore, we construct an Answer table as follows:

Algorithm 1 (Construction of temporary Answer table for a query)
The answer table has the following attributes: (1) a tuple id (tid), (2) a simi-
larity score S that is the result of evaluating the scoring rule, (3) all attributes
requested in the select clause, and (4) a set H of hidden attributes. The set of
hidden attributes is constructed as follows: for each similarity predicate (from
the SIM PREDICATES table) in the query, add to H all fully qualified4 at-
tribute(s) that appear and are not already in H or the attribute was requested
in the query select clause. All attributes retain their original data-type.

Results for the hidden attributes are not returned to the calling user or applica-
tion. We also construct a Feedback table for the query as follows:

Algorithm 2 (Construction of temporary Feedback table for a query)
The attributes for the Feedback table are: (1) the tuple id (tid), (2) a tuple at-
tribute for overall tuple relevance, and (3) all attributes in the select clause of
the query. All attributes are of type integer (except the tid).

Example 4 (Answer and Feedback table construction). Figure 2 shows a table T,
and a query that requests only the score S, and the attributes a and b. The query
has similarity predicates P on b, and Q on c, so attributes b and c must be in H.
But b is in the select clause, so only c is in H and becomes the only hidden attribute.
The feedback table is constructed as described and contains the tid, tuple, a, and b
attributes. A sample Feedback table5 is shown with both tuple and attribute level
feedback. Figure 3 shows Answer and Feedback tables when a join involves a similarity
predicate. When constructing the Answer table, we do not include attribute a in H
since it is listed in the select clause. We include two copies of attribute b in the set H
since it comes from two different tables. The figure lists them together. The Feedback
table is constructed as above and populated with sample data. The headings a1 and
d1 will be explained later.

4 Same attributes from different tables are listed individually.
5 It is not necessary for the user to give feedback for all tuples in the answer set despite

what is shown here.



R:

tid a b c

S:

tid b c d

select θ(as, va, bs, vb) as S, a, d
from R, S
where d > 0 and

O(a, â, wa, aα, as) and
P(R.b, S.b, wb, bα, bs)

order by S desc

θ scoring rule function
O, P, U similarity predicates
wa, wb weights for O, P

â, b̂ query values for O, P
aα, bα cutoff values for O, P
as, bs output score for O, P
va, vb scoring rule weights

Answer:

tid S a d 〈b〉
1 s1 a1 d1 R.b1, S.b1

2 s2 a2 d2 R.b2, S.b2

3 s3 a3 d3 R.b3, S.b3

4 s4 a4 d4 R.b4, S.b4

Feedback:

tid tuple a d

1 1 0 0
2 -1 0 0
3 1 0 0
4 0 -1 0

Scores:

tid O(a, â) U(d, d1) P (R.b, S.b)

1 0.7 0.9 0.8
2 0.8 0.5 0.7
3 0.3 0.4 0.6
4 0.6 – –

Fig. 3. Data Structure Example for Query Refinement – Similarity Join

for-all tuples t in Feedback table
for-all attributes x in t

if ((t.x 6= 0) ∨ (t.tuple 6= 0) ∧ ∃ predicate Z on x
// there is non-neutral feedback on attribute x
Scores table [tid = t.tid, attribute = x] =

Z(Answer table [tid = t.tid, attribute = x])
// recreate detailed scores

Fig. 4. Scores Table Computation

We build an auxiliary Scores table that combines the user supplied feedback
and the values from the answer table, and then populate the table:

Algorithm 3 (Construction of Scores table) The Scores table has the fol-
lowing attributes: (1) a tuple id (tid), (2) all attributes in the select clause, (3)
all attributes in the hidden set H. If two attributes appear in a similarity join
predicate, they are fused into a single attribute. All attributes except the tid are
real valued in the range [0,1] or are undefined. The table is populated with the
scores of values for which the user specifies feedback and whose attributes are
involved in some similarity predicate in the query. For a pair of values such as in
a join predicate, a single score results. Figure 4 shows the algorithm to populate
the Scores table.

Example 5 (Scores table). Figs. 2 and 3 show corresponding Scores tables.

4 Query Refinement Strategies
Our query refinement system supports an interface for refinement algorithms
paired to their corresponding similarity predicates, here we present several spe-
cific strategies for query refinement we have implemented. Query refinement is
achieved by modifying queries in three ways: (1) changing the interpretation
and weights of scoring rules that connect predicates together (inter-predicate re-
finement), (2) adding or removing predicates to the scoring rule (inter-predicate



refinement), and (3) changing the interpretation of the user-defined domain-
specific similarity predicate functions (intra-predicate refinement). Many differ-
ent refinement implementations are possible, here we only present some of those
that we implemented.

Scoring rule refinement. The scores of the several predicates in the query
condition are combined via weights and a scoring rule function denoted by θ in
figures 2 and 3. The techniques discussed here are possible implementations for
the scoring rule refinement function discussed in section 3.

The goal of inter-predicate refinement via query re-weighting is to find the
optimal relative weights among different predicates used in the scoring rule.
Let p1, p2, ..., pn be similarity predicates, s1, s2, ..., sn their similarity scores, and
vopt
1 , vopt

2 , . . . , vopt
n the weights used in the scoring rule θ of a query, such that

θ(s1, v
opt
1 , s2, v

opt
2 , ..., sn, vopt

n ) captures the user’s notion of similarity of a tu-
ple to the users query. Let v0

1 , v0
2 , . . . , v0

n be the initial weights associated with
the scoring rule (for simplicity start with equal weights for all predicates). Re-
weighting modifies these weights based on the user’s feedback to converge them
to the optimal weights: limk−→∞ vk

i = vopt
i . For each predicate, the new weight is

computed based on the similarity score of all attribute values for which relevance
judgments exist. In section 3 we described how a Scores table is derived from
the answer table and the feedback values. Using this information we develop two
strategies:

• Minimum Weight: use the minimum relevant similarity score for the predicate
as the new weight. When the new weight is high, all relevant values are scored
high, and the predicate is a good predictor of the users need. A low weight
indicates the low predictive importance of the predicate. Following figure 2,
the new weight for P (b) is: vb = mini∈relevant(b)(P (bi)) = min(0.8, 0.9, 0.8) =
0.8, similarly, vc = 0.9. Non-relevant judgments are ignored.

• Average Weight: use the average of relevant minus non-relevant scores as
the new weight. Here, the score of all relevant and non-relevant values is
considered, therefore this strategy is more sensitive to the distribution of
scores among relevant and non-relevant values. Generically, for attribute x and

predicate X, we use vx = max(0,

P
xi∈relevant(x) X(xi)−

P
xj∈non-relevant(x) X(xj))

|relevant(x)| + |non-relevant(x)| .
We use max to ensure that vx ≥ 0. Following figure 2, the new weight for P (b)

is: vb =
P

bi∈relevant(b) P (bi)−
P

bj∈non-relevant(b) P (bj)

|relevant(b)| + |non-relevant(b)| = 0.8+0.9+0.8−0.3
3+1 = 0.55,

similarly, vc = 0.9.

In both strategies, if there are no relevance judgments for any objects involv-
ing a predicate, then the original weight is preserved as the new weight. These
strategies also apply to predicates used as a join condition.

Once the new weights are computed, they are normalized, and their values
updated in the QUERY SR table.

Predicate Addition and Removal. The inter-predicate selection policy adds
predicates to or removes them from the query and scoring rule. Users may sub-
mit coarse initial queries with only a few predicates, therefore supporting the



addition of predicates to a query is important. In figure 2, attribute a was ranked
relevant for tuple 1 (since the tuple is relevant overall), and non-relevant for tu-
ple 3. This suggests there might be merit in adding a predicate on attribute a
to the query and adding it to the scoring rule. We now discuss if and how this
can be achieved.

Intuitively, we must be conservative when adding a new predicate to the
query as it may significantly increase the cost of computing the answers, and
may not reflect the users intentions. For these reasons, when adding a predicate,
it must be (1) added with a small initial weight in the scoring rule to keep the
addition from significantly disrupting the ranking of tuples, and (2) have a very
low cutoff since before the addition the effective predicate on the attribute was
true thus returning all values and therefore equivalent to a cutoff of 0.

To add a predicate on an attribute to the query, a suitable predicate must
be found that applies to the given data-type, fits good the given feedback, and
has sufficient support. Our algorithm for predicate addition is as follows: Based
on the SIM PREDICATES table, a list of similarity predicates that apply to
the data-type of attribute a is constructed, this list is denoted by applies(a).
The Answer table is explored to find the highest ranked tuple that contains
positive feedback on attribute a and take a’s value. In figure 2, this value is
a1. This value (a1) becomes the plausible query point for the new predicate.
Next, we iterate through all predicates in the list applies(a), and for each value
of attribute a in the Answer table that has non-neutral feedback, we evaluate
its score using a1 as the query value, and set the score in the Scores table.
The weights for the predicate are the default weights, and the cutoff value is 0.
Say predicate O(a, a1, ...) ∈ applies(a) is under test. Under the Scores table in
figure 2, O(a1) = 1.0 and O(a3) = 0.2 where a1 is relevant and a3 is not relevant.
A predicate has a good fit if the average of the relevant scores is higher than
the average of the non-relevant scores. In this case, this is true. In addition to
this good fit, to justify the added cost of a predicate, we require that there be
sufficient support. Sufficient support is present if there is significant difference
between the average of relevant and non-relevant scores; this difference should
be at least as large as the sum of one standard deviation among relevant scores
and one standard deviation among non-relevant scores. If there are not enough
scores to meaningfully compute such standard deviation, we empirically choose
a default value of one standard deviation of 0.2. In this example thus, the default
standard deviations for relevant and non-relevant scores add up to 0.2+0.2 = 0.4
and since average(relevant) − average(non-relevant) = 1.0 − 0.2 = 0.8 > 0.4
then we decide that predicate O(a) is a good fit and has sufficient support
(i.e., separation) and is therefore a candidate to being added to the query. We
choose O(a, a1, ...) over other predicates in applies(a) if the separation among
the averages is the largest among all predicates in applies(a).

The new predicate O(a, a1, ...) is added to the query tree and to the scoring
rule with a weight equal to one half of its fair share, i.e., 1/(2 × | predicates in
scoring rule |). We do this to compensate for the fact that we are introducing a
predicate not initially specified and do not want to greatly disrupt the ranking.



If there were four predicates before adding O, then O is the fifth predicate and
its fair share would be 0.2, we set a weight of 0.2/2 = 0.1, and re-normalize all
the weights in the scoring rule so that they add up to 1 as described above, and
update the QUERY SR table appropriately.
Predicate Deletion. A predicate is eliminated from the query and scoring
rule function if its weight in the scoring rule falls below a threshold during re-
weighting since its contribution becomes negligible, the remaining weights are
re-normalized to add up to 1. For example, if we use average weight re-weighting
in figure 3, then the new weight for attribute a is: max(0, (0.7+0.3)−(0.8+0.6)

2+2 ) =
max(0,−0.1) = 0. Therefore, predicate O(a, â) is removed.

Intra-Predicate Query Refinement. In intra-predicate refinement, the simi-
larity predicates are modified in several ways. Predicates, in addition to a single
query point (value), may use a number of points as a query region, possibly with
its own private, attribute-specific scoring rule function [17]. The refinement task
is to use the provided feedback to update the query points, parameters, and
cutoff values in the QUERY SP table, to better reflect the users intentions.

Intra-predicate refinement is by its very nature domain dependent, hence
each user-defined type specifies its own scoring and refinement functions to
operate on objects of that type. We present some strategies in the context of a
2D geographic location data-type (cf. close-to in example 3). In the context of
figure 2, let attribute b be of type location, and P be the close to function, then
we invoke the corresponding refinement function close to refine( {b1, b2, b3, b4},
{1, 1, 1,−1}), with the list of b values for which the user gave feedback and the
corresponding feedback. The following approaches are used for this type:6

• Query Weight Re-balancing adjusts the weights for individual dimensions to
better fit the users feedback. The new weight for each dimension of the query vector
is proportional to the importance of the dimension, i.e., low variance among relevant
values indicates the dimension is important [12, 19]. If b1.x, b2.x, and b3.x are similar
(i.e., small variance), and b1.y, b2.y, and b3.y are different (i.e., larger variance),
we infer that the x dimension captures the users intention better, and set wx =

1
std dev(bx)

and wy = 1
std dev(by)

, and then re-normalize the weights such that wx +
wy = 1.

• Cutoff Value Determination, since this setting does not affect the result ranking,
we leave this at 0 for our experiments, but one useful strategy is to set it to the
lowest relevant score.

• Query Point Selection computes a new point or set of points as query values
that is/are closer to relevant and away from non-relevant objects. Notice that query
point selection relies on the query values remaining stable during an iteration and
is therefore suited only for predicates that are not involved in a join, or predicates
that are not joinable (cf. definition 3). Two ways to compute new query points are:

• Query Point Movement uses a single value or point per predicate as the query,
and we use Rocchios method for vector space models [18, 19] for refinement. The

query value b̂ migrates to b̂’ by the formula (Rocchio) b̂’ = α× b̂+β×
P

(b1,b2,b3)
3

−
6 Note that this discussion uses distance functions rather than similarity functions

since it is more natural to visualize the distance between points than their similarity;
distance can easily be converted to a similarity value.



γ×
P

(b4)
1

, α+β+γ = 1 where α, β, and γ are constants that regulate the speed at
which the query point moves towards relevant values and away from non-relevant
values.

• Query Expansion uses multiple values per attribute as a multi-point query [17,
21], multiple points are combined with a scoring rule λ. Good representative
points are constructed by clustering the relevant points and choosing the cluster
centroids as the new set of query points, this can increase or decrease the number
of points over the previous iteration. Any clustering method may be used such
as the k-means algorithm, as well as the technique presented in FALCON [21]
which we also implemented in our system.

This set of intra-predicate refinement techniques provides for rich flexibility in
adapting predicates to the users intentions. These techniques may be used indi-
vidually, or combined to effect single-attribute predicate changes. Specific data-
types may have specially designed similarity predicates and refinement functions
that achieve refinement in a different way, but as long as they follow the estab-
lished interface, they can be seamlessly incorporated into our system.

5 Experiments

Similarity retrieval and query refinement represent a significant departure from
the existing access paradigm (based on precise SQL semantics) supported by
current databases. Our purpose in this section is to show some experimental
results, and illustrate that the proposed access mechanism can benefit realistic
database application domains.

We built our prototype system as a wrapper on top of the Informix Universal
Server ORDBMS. We place our system in-between the user and the DBMS
as shown in figure 1. We handle user queries, analyze and rework them, and
forward relevant queries and data to the DBMS for query execution. The client
application navigates through the results, starting with the best ranked ones,
and submits feedback for some or all tuples seen so far. The client can stop at
any time, refine and re-execute the updated query.

We study our systems various components, and present a realistic sample
e-commerce catalog search application to validate the approach.

5.1 Evaluation methodology

To evaluate the quality of retrieval we establish a baseline ground truth set
of relevant tuples. This ground truth can be defined objectively, or subjec-
tively by a human users perception. When defined subjectively, the ground
truth captures the users information need and links the human perception into
the query answering loop. In our experiments we establish a ground truth and
then measure the retrieval quality with precision and recall [4]. Precision is
the ratio of the number of relevant tuples retrieved to the total number of
retrieved tuples: precision = |relevant

T
retrieved|

|retrieved| , while recall is the ratio of
the number of relevant tuples retrieved to the total number of relevant tuples:
recall = |relevant

T
retrieved|

|relevant| . We compute precision and recall after each tuple is
returned by our system in rank order.



The effectiveness of refinement is tied to the convergence of the results to the
users information need. Careful studies of convergence have been done in the
past in restricted domains, e.g., Rocchio [18] for text retrieval, MARS [19, 17],
Mindreader [12], and FeedbackBypass [5] for image retrieval, and FALCON [21]
for metric functions. We believe (and our experiments will show) that these
convergence experiments carry over to the more general SQL context in which
we are exploring refinement.

5.2 Experimental results

For these experiments, we used two datasets. One is the fixed source air pollution
dataset from the AIRS7 system of the EPA and contains 51,801 tuples with
geographic location and emissions of 7 pollutants (carbon monoxide, nitrogen
oxide, particulate less than 2.5 and 10 micrometers, sulfur dioxide, ammonia,
and volatile organic compounds). The second dataset is the US census data with
geographic location at the granularity of one zip code, population, average and
median household income, and contains 29470 tuples. We used several similarity
predicates and refinement algorithms.

For the first experiment we implemented a similarity predicate and refine-
ment algorithm based on FALCON [21] for geographic locations, and a query
point movement and dimension re-weighting for the pollution vector of the EPA
dataset. We started with a conceptual query looking for a specific pollution pro-
file in the state of Florida. We executed the desired query and noted the first 50
tuple as the ground truth. Next, we formulated this query in 5 different ways,
similar to what a user would do, retrieved only the top 100 tuples, and submit-
ted tuple level feedback for those retrieved tuples that are also in the ground
truth. Here we performed 5 iterations of refinement. Figure 5a) shows the results
of using only the location based predicate, without allowing predicate addition.
Similarly figure 5b) shows the result of using only the pollution profile, without
allowing predicate addition. Note that in these queries feedback was of little
use in spite of several feedback iterations. In figure 5c) we instead used both
predicates but with the default weights and parameters, notice how the query
slowly improves. Figure 5d) starts the query with the pollution profile only, but
allowing predicate addition. The predicate on location is added after the first
iteration resulting in much better results. Similarly figure 5e) starts only with
the location predicate. The initial query execution yields very low results, but
the pollution predicate is added after the initial query resulting in a marked im-
provement. In the next iteration, the scoring rule better adapts to the intended
query which results in another high jump in retrieval quality. It is sufficient to
provide feedback on only a few tuples, e.g., in this query, only 3 tuples were
submitted for feedback after the initial query, and 14 after the first iteration.
The number of tuples with feedback was similarly low (5%-20%) in the other
queries.

In the second experiment, we use a join query over the EPA and census
datasets. Notice that we cannot use the location similarity predicate from the
7 http://www.epa.gov/airs
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Fig. 5. Precision–recall graphs for several iterations, and refinement strategies

first experiment since the FALCON [21] based similarity predicate is not join-
able. This is because it relies on a set of “good points” which must remain the
same over the execution of a query iteration. If we change the set of good points
to a single point from the joining table in each call, then this measure degener-
ates to simple Euclidean distance and the refinement algorithm does not work.
Figure 5f) shows the results of a query where the census and EPA datasets are
joined by location, and we’re interested in a pollution level of 500 tons per year
of particles 10 micrometers or smaller in areas with average household income of
around $50,000. We constructed the ground truth with a query that expressed
this desire and then started from default parameters and query values.

5.3 Sample E-Commerce Application

To illustrate a realistic application, we built a sample E-commerce application on
top of our query refinement system. We felt that the flexibility and power offered



by similarity retrieval and refinement is naturally more useful in tasks involving
exploratory data analysis in which users are not initially sure of their exact
information need. One such application domain is searching product catalogs
over the Internet. We develop a sample catalog search application in the context
of garment searching. We explore how the granularity (i.e., tuple vs. column
level feedback) and the amount of feedback affect the quality of results. We
emphasize that searching e-tailer catalogs represents only a single point in a
wide array of application domains which can benefit from similarity retrieval
and refinement. Other natural application domains include bioinformatics and
geographic information systems.
E-Commerce Prototype Implementation. To build our sample garment
catalog search application, we collected from various apparel web sites8 1747
garment item descriptions of a variety of garment types including pants, shirts,
jackets, and dresses. For each item, we collected its manufacturer, type (e.g.,
shirt, jacket, etc.), a short and long description, price, gender (male, female,
unisex), colors and sizes available, and a picture of the garment itself. We also
built a Java based front end user interface for the garment search application
that lets users browse, construct queries and refine answers.

Each data-type has its own similarity function implemented as a user-defined
function (UDF). The similarity for textual data is implemented by a text vector
model [4] and is used for the manufacturer, type, and short and long description
attributes. The similarity function for the price attribute is: simprice(p1, p2) =
1− |p1−p2|

6×σ(p) .9 The Image is represented through multiple attributes: the image is
stored as a blob itself, a small thumbnail image is also stored as a blob, and two
image derived features that are used for content-based image retrieval [16, 19].
The features used are for color the color histogram [16] feature with a histogram
intersection similarity function, and for texture the coocurrence matrix texture
feature with an Euclidean distance based similarity function [16]. The remaining
attributes of the garment data set were not used for search. The similarity values
of the data-type specific similarity functions are combined with a weighted linear
combination (weighted summation) scoring rule function.

To complement the similarity and scoring functions for retrieval, we imple-
mented refinement algorithms for each similarity predicate, and across predi-
cates. We used Rocchios text vector model relevance feedback algorithm [18]
for the textual data. For the price, color histogram and coocurrence texture
attributes we use re-weighting, and query point movement and expansion as
described in section 4 [19, 17].
Example Query. We explore our system through the following conceptual
query: “men’s red jacket at around $150.00”. We browsed the entire collection
and constructed a set of relevant results (ground truth) for the query, we found
10 items out of 1747 to be relevant and included them in the ground truth.
Several ways exist to express this query, we try the following:

8 Sources: JCrew, Eddie Bauer, Landsend, Polo, Altrec, Bluefly, and REI.
9 This assumes that prices are distributed as a Gaussian sequence, and suitably nor-

malized.
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Fig. 6. Precision–recall graphs averaged for 5 queries for different amount and
granularity of feedback

1. Free text search of type, short and long description for “men’s red jacket at around
$150.00”.

2. Free text search of type with “red jacket at around $150.00” and gender as male.
3. Free text search of type with “red jacket”, gender as male, and price around

$150.00.
4. Free text search of type with “red jacket”, gender as male, price around $150.00,

and pick a picture of a red jacket which will include the image features for search.

We ran all four queries with feedback and evaluate the effectiveness of refine-
ment comparing tuple versus column level feedback using precision and recall.
Effect of Feedback Granularity on Refinement Quality. Our framework
provides for two granularities of feedback: tuple and column level. In tuple level
feedback the user judges the tuple as a whole, while in column level she judges
individual attributes of a tuple. Column level feedback presents a higher bur-
den on the user, but can result in better refinement quality. This is shown in
figures 6a) which shows tuple level feedback and 6b) which shows column level
feedback. For these figures we used 4 different queries with their ground truth,
gave feedback on exactly 2 tuples and averaged the results. For tuple level feed-
back, 2 entire tuples were selected, for column level feedback, we chose only the
relevant attributes within the tuples and judged those. As expected, column level
feedback produces better results.
Effect of Amount of Feedback Judgments on Refinement Quality. While
in general the refinement system adapts better to the users information need
when it receives more relevance judgments, in practice this is burdensome to



users. The amount of feedback may vary from user to user; here we explore
how the amount of feedback affects the retrieval quality. Empirically, even a
few feedback judgments can improve query results substantially. We explore the
same 4 queries from above and give tuple level feedback for 2, 4 and 8 tuples.
The results are shown in figures 6a,c,d) respectively. More feedback improves the
results, but with diminishing returns, in fact column level feedback for 2 tuples
is competitive with tuple level feedback for 8 tuples. Based on this, we conclude
that users need not expend a huge effort in feedback to improve their answers.

6 Related Work
While there is much research on improving the effectiveness of queries in spe-
cific applications, we are not aware of work that addresses generalized query
refinement in general purpose SQL databases.

Traditionally, similarity retrieval and relevance feedback have been studied
for textual data in the IR [4] community and have recently been generalized to
other domains. IR models have been generalized to multimedia documents, e.g.,
image retrieval [19, 16, 10] uses image features to capture aspects of the image
content, and provide searching. Techniques to incorporate similarity retrieval in
databases have also been considered for text and multimedia [11, 1], but generally
do not consider query refinement.

Query refinement through relevance feedback has been studied extensively in
the IR literature [4, 18] and has recently been explored in multimedia domains,
e.g., for image retrieval by Mindreader [12], MARS [19, 17], and Photobook [14],
among others. FALCON [21] uses a multi-point example approach similar to
MARS [17] and generalizes it to any suitably defined metric distance function,
regardless of the native space. FALCON assumes that all examples are drawn
from the same domain and does not handle multiple independent attributes.
Under our framework, we consider FALCON as a non-joinable algorithm since
it is dependent on the good set of points remaining constant during a query
iteration. FALCON however fits perfectly in our framework as an intra-predicate
algorithm for selection queries as we discussed in section 4 and showed in our
experiments. Given the applicability of refinement to textual and multimedia
data, our paper takes the next step, extending refinement to general SQL queries.

Cooperative databases seek to assist the user to find the desired information
through interaction. VAGUE [15], in addition to adding distance functions to re-
lational queries, helps the user pose imprecise queries. The Eureka [20] browser
is a user interface that lets users interactively manipulate the conditions of a
query with instantly update the results. The goal of the CoBase [8] coopera-
tive database system is to avoid empty answers to queries through condition
relaxation. Agrawal [2] proposes a framework where users submit preferences
(feedback) and explains how they may be composed into compound preferences.

7 Conclusions
In this paper, we concentrated on developing a data access model based on simi-
larity retrieval and query refinement. We presented a framework to integrate sim-
ilarity functions and query refinement in SQL databases, and presented several
specific refinement strategies along with experiments to validate our approach.
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